Assumptions for the proposed Syllabus:
- Course Number is ISM 250, indicating the course may be taken in parallel to ACCT 250
- Since we are going to get rid of 420, and so I add two weeks on data networking and security to this course.
- There is no need for a lab to teach the course. Instructors and students can use a web browser to do exercises.
- Students do not need to subscribe to ChatGPT, and they will use school API license to access ChatGPT
- Course may be taught as large classes, and there are no elements of discussions, case analysis, or research to be feasible.
- Python coding is minimized to two weeks in understanding data types, structures, loops, and if-else decisions.
- AI is reduced to four weeks: intro, prompt engineering, deep learning, and application to linear regression.
- AI is used every week and is applied to a wide range of business functions: marketing, human resource, operations management, data management, entrepreneurship, finance, and accounting.
===================================================================
Instructor: Dr. Liping Liu, College of Business Building 360, 330-972-5947
Office Hours: 1:30-3:30 PM Mondays and Wednesdays
Text Books and References:
- A compilation of lecture notes, book chapters, articles, and videos on Artificial Intelligence, Information Systems, Deep Learning, Python, and AI tools
Course Description: This is an introductory course to Applied Artificial Intelligence and its applications to business, including the foundational concepts of Information Systems such as data models, information security, systems integration and architecture. It is designed to serve two purposes. First, it teaches students to be literate on artificial intelligence, information systems, and tools and techniques to become managerial end users of AI and IS techniques. Second, it introduces the fundamental concepts and technics and teaches students to become decision makers in the management of artificial intelligence integration and applications.
Prerequisites: The prerequisite for this class is 6200:250: Computer Applications. In particular, students are expected to be proficient in using PC and some basic still of using Excel.
Daily Schedule:
- Week 1: Introduction of AI: history, success stories, five tribes, and a tour of ChatGPT and Google Colab. Exercise 1: use ChatGPT to generate resumes, to translate foreign languages, and write a literature review on a selected topic. Exercise 2: Use Google Colab as a calculator for numerical computations, to send prompt to ChatGPT, and to retrieve ChatGPT license) Assignments: 1) Setup Google Drive and Colab and use Colab to ask ChatGPT to generate a memo to your friends to persuade them to learn AI (check for completion)
- Week 2: Prompt Engineering (in-context learning and prompt techniques: zero-shot, few-shot, chain-of-thought prompting). Exercise 1: use CoT technique to prompt ChatGPT for creating a business plan on a business idea. Exercise 2: use DALL-E to generate arts and product designs with specific art styles and modifiers in image quality, lighting, situations, etc. Assignment: Chat with ChatGPT on a personal or community problem that you are facing and ask ChatGPT to draft a plan to solve the problem to your satisfaction and submit a list of your prompts and responses as a Word document (check for completion).
- Week 3: Data Digitization and Measurement: data, information, knowledge, analog and digital data, bits and bytes, ASCII and Unicode, pixels, and pulse code modulation. Exercise: Use Colab to convert between decimal and binary numbers. Assignment: Use ChatGPT to convert a text, a photo, and a song into binary data.
- Week 4: Information Systems: hardware, software, database, application architecture, CPU, memory, client-server, middleware, n-tier system, DBMS, RAD, SDLC, compiler, systems analysts. Assignment: Write an essay to compare the similarities and differences between Computer Science and Information Systems as areas of studies.
- Week 5: Data Types: texts, numbers, times, Boolean numbers, and lists. Exercise 1: use for-loop control to print a list of names and birth dates; Exercise 2: use for-loop to submit a list of customer reviews to ChatGPT and ask it to write a letter to the Production Department and another letter to Sales Department for actions addressing the issues. Exercise 3: use if-else decision control to print selected names in a list. Assignment: Create a list of customer reviews and print those that mentioned a particular word. (check for correctness)
- Week 6: Data Models: XML, HTML, and JSON. Exercise 1: send a list of customer reviews on a product and ask ChatGPT to create a summary of the reviews into an HTML table and an Excel spreadsheet on the issues mentioned in the reviews; Assignment: send a financial document and ask ChatGPT to extract financial information and output the result as JSON data object.
- Week 7: Midterm Exam
- Week 8: Data Management: relational data models, database, primary keys, and foreign keys, SQL queries. Exercise 1: specify table names and the columns of each table for human resource management and ask ChatGPT to generate SQL commands to create tables, insert sample data, and retrieve information in Microsoft Access, mySQL, and Oracle. Assignment: specify table structures of a sales databases including customers, orders, orderlines, and products. Then ask ChatGPT to create SQL commands for MS Access to create the tables, insert sample data, and retrieve the total amount of orders made by each customer. (Check for completion)
- Week 9: Data Structures: arrays, time series, and data frames. Exercise 1: load Excel data into data frames. Assignment: create five lists of student names, birth dates, majors, admission dates, part-time work earnings. Then create a data frame using the list, save the data frame as an Excel file, and load the file back to Google Colab. (check for completion)
- Week 10: Excel Modeling: Exercise 1: load data from Excel into Google Colab and summarize and visualize data using Python code. Exercise 2: Use ChatGPT to generate python code and modify and run code for creating an Excel spreadsheets for products including their description, sizes, colors, in-stock quantities, and prices, generate code to compute total inventory values, compute the number of products which is under-stocked. Assignment: Use ChatGPT to generate code to create an Excel spreadsheet to manage personal daily expenses, compute total expenses every month, and plot the trend of monthly spendings. (check for completion)
- Week 11: Infrastructure: network architectures, devices, services, and addressing. Terms and Concepts: LAN, bus, ring, star, IP addresses, repeaters and hubs, switches and bridges, routers, routing table, default gateway, domain name systems, load balancing, TCP/IP.
- Week 12: Information Security: threats, firewalls, cryptography, public and private keys, and hash functions, Exercise: generate python code to encrypt and decrypt accounting data. Assignment: write an essay on information security that address the following questions: why do your email and bank account data can be intercepted by anybody on the Internet? Which technique can protect your information security and how?
- Week 13: Artificial Intelligence: introduction to neural networks and deep learning (artificial neurons, layers, feed forward, backpropagation, activation functions). Assignment: Create a table to summarize the following activation functions, including their function forms, common use cases, and their pros and cons)
- Week 14: Artificial Intelligence: create neural networks with TensorFlow for linear regression (keras and tensor flows tools, dense layers, input shapes, loss, metrics, optimizers, training and evaluation) Assignment: predict insurance claim costs using a network of four layers of 64 neurons with relu activation, 32 neuros with relu activation, dropout with rate = 0.5, and output layer of one neuron with linear activation.
- Week 15: Final Exam
Objectives: Through this course, the student should be able to
- Understand neural network models and key concepts behind popular AI tools
- Learn how to create prompts for popular AI tools and use the tools to generate audio, video, art, texts, and code for data management, spreadsheet modeling, information security, and data analytics
- Understand basic Python programming concepts and apply them to modify and run Python code
Exams: This course will have three major exams as scheduled above. Each exam includes both hands-on and written problems.
Assignments: Homework is assigned once a week for 12 weeks; each consists of conceptual questions and hands-on projects classified into three grading categories: correctness, closeness, and completeness. The correctness problems will be graded by ecourse.org, and closeness questions are graded and/or commented by instructors. Students will earn points automatically for each completeness question if it is finished (it has to be deemed complete). Assignments are due at the beginning of classes meetings on Mondays (except for holidays). No late homework will be graded. Please show your work in a neat and orderly fashion. Write or type your work on one side and in every other line. Use standard size paper (8 1/2'' by 11''). Do not use spiral notebook paper.
Attendance: Attendance is MUST and will be 10% of your final grade. Attendance will be managed by ecourse.org. The formula for computing your attendance grade is non-linear. It will take one point off for the first absence, 2 points off the second, 3 points off the third, and 4 points off the fourth. If you missed the equivalent of three-week classes, you fail the course automatically. Under special situations, you can take some classes online with the following guidelines:
- You must obtain permission from the instructor at least one day ahead of each online session
- Follow the lectures or recordings to perform all in-class hands-on exercises and take notes. Within one day from the class submit your notes and the finished exercises to ecourse.org as Proof of Attendance.
- All weekly assignments are due at the same time as in-person classes. All exams must be onsite.
Quizzes: I will use quizzes regularly to check your completion or preparation of assignments
Makeup: Each student with appropriate excuses may have at most one chance to makeup homework or quiz. Note that it is your privilege but not your right to have this special favor. Also, all makeups must be completed within one week of due date and before answer key is released.
Grades: Your final grades will be calculated by the following formulas:
35% (HW) + 55% (Tests) + 10% (Attendance)
A = 93-100%; A– = 90-92%; B+ = 87-89%; B = 83-86%; B– = 80-82%; C+ = 77-79%; C = 73-76%; C– =70-72%; D = 60-69%; F = 59% and less
Misconduct: Academic misconduct by a student shall include, but not limited to: disruption of classes, giving and receiving unauthorized aid on exams or in the preparation of assignments, unauthorized removal of materials from the library, or knowingly misrepresenting the source of any academic work. Academic misconduct by an instructor shall include, but not limited to: grading student work by criteria other than academic performance or repeated and willful neglect in the discharge of duly assigned academic duties. Convicted violations may result in grade penalties, besides the school official ones, such as increased scrutiny of future submissions, reduced benefits of curving, if any, and/or the reduction of overall grade.
On Collaboration: All for-credit assignments, except for those designated as group projects, must be done independently, and collaboration in providing or asking for answers to those assignments constitutes cheating.
On AI Tools: In this class, I allow students to use AI tools to help their learning. However, submitting AI generated work in lieu of your own personal contribution for credits is a violation of academic code. If a submitted work is suspected to be AI generated, the student will be asked to reproduce the submitted work in front of the instructor.
Looking for additional help? Students looking for additional assistance outside of the classroom are advised to consider working with a peer tutor through Knack. The University of Akron CBA has partnered with Knack to provide students with access to verified peer tutors who have previously aced this course. To view available tutors, visit uakron.joinknack.com and sign in with your student account. At the same time, if you are doing well in this class, please go to uakron.joinknack.com where you can create a verified tutoring profile and begin helping other students.
|